
UNCORRECTED
PROOFApplication of machine learning in industrial radiographic

testing

Petra Perner a,*, Uwe Zscherpel b, Carsten Jacobsen b

a Institute of Computer Vision and Applied Computer Sciences Leipzig, Arno-Nitzsche-Strasse 45, 04277 Leipzig, Germany
b Bundesanstalt f�ur Materialforschung und -pr�ufung, Unter den Eichen 87, 12205 Berlin, Germany

Abstract

In this paper, we are empirically comparing the performance of neural nets and decision trees based on a data set for

the detection of defects in welding seams. This data set was created by image feature extraction procedures working on

digitized X-ray ®lms. We introduce a framework for distinguishing classi®cation methods. We found that more detailed

analysis of the error rate is necessary in order to judge the performance of the learning and classi®cation method.

However, the error rate cannot be the only criterion for comparing between the di�erent learning methods. This is a

more complex selection process that involves more criteria that we are describing in this paper. Ó 2000 Elsevier Science

B.V. All rights reserved.
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1. Introduction

Developing image interpretation system com-
prises two tasks: selecting the right features and
constructing the classi®er.

The selection of the right method for the clas-
si®cation is not easy and often depends on the
preference of the system developer. This paper
describes a ®rst step towards a methodology for
the selection of the appropriate classi®cation
method. Our investigation was not done on a
standard academic data set where the data are
usually nicely cleaned up. The basis for our in-
vestigation is an image database that contains X-

ray images from welding seams. An image is de-
composed into regions of interest and, for each
region of interest, 36 features are calculated by an
image processing procedure. A detailed descrip-
tion of this process is given in Section 2. In the
resulting database, each entry describes a region of
interest by means of 36 feature values and a class
label determined by destructive testing after the X-
ray penetration. The task is to classify the Regions
of Interest (ROI) automatically into background
or into defects such as crack and undercut.

Two di�erent kinds of classi®er were trained
based on that data set: neural nets and decision
trees. The di�erent kinds of neural nets and deci-
sion trees are described in Section 3. Since the class
is given, we are dealing with supervised learning.
We introduce a framework for distinguishing
learning and classi®cation methods in Section 4. A
detailed description of the performance analysis is
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given in Section 5. In contrast to most other work
on performance analysis (e.g. Michie et al., 1994),
we found that a more detailed analysis of the error
rate is necessary in order to judge the performance
of the learning and classi®cation methods. How-
ever, the error rate cannot be the only criterion for
the comparison between the di�erent learning
methods. It is a more complex selection process
that involves more criteria such as explanation
capability, the number of features involved in
classi®cation, etc. Finally, we will give our con-
clusions in Section 6.

2. The application

The subject of this investigation is the in-service
inspection of welds in pipes of austenitic steel. Pipe
systems in a power plant are inspected routinely
during the lifetime of the power plant by radio-
graphic testing to ensure the integrity of the
equipment. Double wall penetration with X-rays
(Emax < 200 KeV) and special radiographic ®lms
for NDT with lead screens are used for this in-
spection. The ¯aws to be looked for in the au-
stenitic welds are longitudinal cracks due to inter-
granular stress corrosion cracking starting from
the inner side of the tube.

All the data were collected during a Round
Robin Test (Brast et al., 1997). The last step of this
Round Robin Test was a destructive testing
(grinding) of the inspected welds. This gives the
most advantageous situation, that the ``truth'' of
all indications is known which is not the normal
case in industrial non-destructive testing.The ra-
diographs are digitized with a spatial resolution of
70 lm and a gray level resolution of 16 bit per
pixel by a special NDT ®lm scanner. Afterwards
they are stored and decomposed into various ROI
of 50� 50 pixel size. The essential information in
the ROIs is described by a set of features which is
calculated from various image-processing meth-
ods.

These image-processing procedures are based
on the assumption that the crack is roughly par-
allel to the direction of the weld. This assumption
is reasonable because of the material and welding
technique. It allows us to de®ne a marked prefer-

ential direction. It is now feasible to search for
features in gray level pro®les perpendicular to the
weld direction in the image. In Fig. 1, the ROIs of
a crack, an undercut and of no disturbance are
shown with the corresponding cross sections and
pro®le plots.

Flaw indications in welds are imaged in a ra-
diograph by local grey level discontinuities. Thus,
it is reasonable to apply the well-known morpho-
logical edge ®nding operator (Klette and Zampe-
roni, 1992), the derivative of Gaussian operator
(Pratt, 1991) and the Gaussian weighted image
moment vector operator (Eua-Anant et al., 1996).
These ®lters are developed to enhance small local
gray value changes on an inhomogeneous back-
ground.

A one-dimensional FFT-®lter for this special
crack detection problem was designed (Zscherpel
et al., 1995). This ®lter is based on the assumption
that the preferential direction of the crack is po-
sitioned in the image in the horizontal direction.
The second assumption that was determined em-
pirically is that the half power width of a crack
indication is smaller than 300 lm. The ®lter con-
sists of a columnwise FFT highpass Bessel opera-
tion that works with a cuto� frequency of 2 l/mm.
Normally the half-power width of undercuts is
greater so that this ®lter suppresses them. This
means that it is possible to distinguish between
undercuts and cracks with this FFT-®lter. A row-
oriented lowpass that is applied to the output of
this ®lter helps to eliminate noise and to point out
the cracks more clearly.

Furthermore, a Wavelet ®lter was used (Strang,
1989). The scale representation of the image after
the Wavelet transform makes it possible to sup-
press the noise in the image with a simple thresh-
old operation without losing signi®cant parts of
the content of the image. The noise in the image is
an interference of ®lm and scanner noise and ir-
regularities caused by the material of the weld.

The features which describe the content of the
ROI are extracted from pro®le plots which run
through the ROI perpendicular to the weld.

In a single pro®le plot, the position of a local
minimum is detected which is surrounded by two
maxima that are as large as possible. This de®ni-
tion varies a little depending on the respective
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image processing routine. A template which is
adapted to the current pro®le of the signal allows
us to calculate various features �S1; S2; L1; L2�.
Moreover the half-power width and the respective
gradients between the local extrema are calculated.
To avoid statistical calculation errors, the calcu-
lation of the template features is averaged over all
of the columns along an ROI. This procedure
leads to 36 parameters.

The data set used in this experiment contains
features for regions of interest from background,
crack and undercut regions.The data set consists
of altogether 1924 ROIs with 1024 extracted from
regions of no disturbance, 465 from regions with
cracks and 435 from regions with undercuts.

3. Learning methods

We have used induction of decision trees and
learning of neural nets for our problem.

Four types of neural networks are used here: a
Backpropagation, a Radial Basis Function Net-
work (RBF), a Fuzzy ARTMAP Network and

Learning Vector Quantization (LVQ) Network
(e.g. Zell, 1994). The learning algorithm of the
network is based on the gradient descent method
for error minimization. First, we tried the wrapper
model for feature selection (Lui and Motoda,
1998). We did not obtain any signi®cant result
with this model. Therefore, we used a parameter
signi®cance analysis (Egmont-Petersen, 1994) for
feature selection. Based on that model, we can
reduce the parameters to seven signi®cant ones.

For decision tree induction we used our soft-
ware package called Decision Master. An entropy
minimization criterion is used for attribute selec-
tion (Quinlain, 1996) and reduced-error pruning
technique (Quinlain, 1987a) is used for tree prun-
ing. Numerical attribute discretization is done
based on methods described in Perner and Trau-
tzsch (1998). Decision tree induction may also be
looked upon as a method for attribute selection.
During the learning phase, only the most relevant
attributes are chosen from the whole set of attri-
butes for the construction of decision rules in the
nodes. Therefore, we do not need to carry out

Fig. 1. ROI of crack, of an undercut and of a region without disturbance with corresponding crossections and pro®le plots.
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feature selection before the learning process as in
the case of neural nets.

4. Evaluation criterion

The evaluation criterion most used for a clas-
si®er is the error rate fr � Nf=N with Nf the
number of falsely classi®ed samples and N the
whole number of samples. In addition to that, we
use a contingency table in order to show the
qualities of a classi®er, see Table 1. In the ®eld of
the table are input the real class distribution and
the class distribution proposed by the classi®er as
well as the marginal distribution cij The main di-
agonal is the number of correctly classi®ed sam-
ples. The last row shows the number of samples
assigned to the class shown in row 1 and the last
line shows the class distribution proposed by the
classi®er.

From this table, we can calculate parameters
that assess the quality of the classi®er.

The correctness

p �
Xm

i�1

cii

Xm

i�1

Xm

j�1

cij

,

is the number of correctly classi®ed samples ac-
cording to the number of samples. That measure is
the opposite of the error rate.

For the investigation of the classi®cation qual-
ity we measure the classi®cation quality
pii � cii=

Pm
i�1 cij according to a particular class

iand the class speci®c quality that is
pki � cii=

Pm
j�1 cji the number of correctly classi®ed

samples for one class. In addition to that we use
other criteria shown in Table 2.

One of these criteria is the cost for classi®cation
expressed by the number of features and the
number of decisions used during classi®cation. The
other criterion is the time needed for learning. We
also take the explanation capability of the classi®er
into consideration as another quality criterion. It
is also important to know if the classi®cation
method can learn the classi®cation function (the
mapping of the attributes to the classes) correctly
based on the training data set. Therefore, we not
only consider the error rate based on the test set we
also consider the error rate based on the training
data set. For the evaluation of the error rate, we
used the test and train method instead of cross-
validation (Weiss and Kulikowski, 1991) since it
would have been computationally expensive to
evaluate the neural nets by crossvalidation.

5. Results

5.1. Error rate, generalization and representation
ability

The error rate for the design data set and the
test data set is shown in Table 3. The unpruned
decision tree shows the best error rate for the de-
sign data set. This tree represents the data best.

Table 1

Contingency table

Assigned class

index

Real class index

1 i . . . m Sum

1 c11 . . . . . . c1m

j . . . cji . . . . . .

. . . . . . . . . . . . . . .

m cm1 . . . . . . cmm

Sum

Table 2

Criteria for comparison of learned classi®ers

Generalization capability of the classi®er Error rate based on the test data set

Representation of the classi®er Error rate based on the design data set

Classi®cation costs Number of features used for classi®cation

Number of nodes or neurons

Explanation capability Can a human understand the decision?

Learning performance Learning time

Sensitivity to class distribution in the sample set
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However, if we look for the error rate calculated
based on the test data set, then we note that the
RBF neural net and the Backpropagation network
can do better. Their performance shows not such a
big di�erence in the two error rates as that for the
decision tree. The representation and generaliza-
tion ability is more balanced in the case of the
neural networks whereas the unpruned decision
tree gets over®tts the data. This is a typical char-
acteristic of decision tree induction. Pruning
techniques should reduce this behavior. The rep-
resentation and generalization ability of the
pruned tree shows a more balanced behavior but it
cannot outperform the results of the neural nets.

The behavior of the neural nets according to
their representation and generalization ability is
controlled during the learning process. The train-
ing phase was regularly interrupted and the error
rate was determined based on the training set.
When the error rate decreased after a maximum
value, then the net was assumed to have reached ist
maximal generalization ability.

It is interesting to note that the Fuzzy-ART-
MAP-Net and the LVQ have the same behavior
with respect to their representation and general-
ization ability as the decision trees.

The observation for the decision tree suggests
another methodology for using decision trees. In
data mining, where we mine a large database for
the underlying knowledge it might be more ap-
propriate to use decision tree induction since it can
represent the data well.

The performance of the RBF expressed by the
error rate is 4% better than it is for the decision
tree. The question is: How can we access this re-
sult? Is 4% a signi®cant di�erence? We believe the
decision must be made based on the application.
In some cases it might be necessary to have a 4%
better error rate whereas in other cases it might not
have a signi®cant in¯uence.

5.2. Classi®cation quality and class speci®c quality

We obtain a clearer picture of the performance
of the various methods if we look for the classi®-
cation quality pk and the class-speci®c classi®ca-
tion quality pt, see Tables 4±8. In the case of the
decision tree, we observe that the class speci®c
quality for class undercut is very good and can

Table 4

Contingency table of the classi®cation result for the decision

tree

Classi®cation

result

Real class index

Background Crack Undercut Sum

Background 196 2 1 199

Crack 12 99 22 132

Undercut 0 1 58 59

Sum 208 102 80 390

pk 0.94 0.97 0.73

pt 0.98 0.74 0.98

p � 0:90

k � 0:85

Table 5

Contingency table of the classi®cation result for the back-

propagation net

Classi®cation

result

Real class index

Background Crack Undercut Sum

Background 194 5 1 200

Crack 1 97 3 100

Undercut 13 0 76 90

Sum 208 102 80 390

pk 0.93 0.95 0.95

pt 0.97 0.96 0.85

p � 0:94

k � 0:90

Table 3

Error rate for design data set and test data set

Name of classi®er Error rate on

design data set

in %

Error rate on

the test data set

in %

Binary decision tree

Unpruned 1.7 9.8

Pruned 4.6 9.5

n-ary decision tree

Unpruned 8.6 12.3

Pruned 8.6 12.3

Backpropagation

network

3.0 6.0

RBF neural net 5.0 5.0

Fuzzy-ARTMAP-Net 0.0 9.0

LVQ 1.0 9.0
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outperform the error rate obtained by neural nets.
In contrast to that, the classi®cation quality for
decision trees is poorer. Samples from the class

``undercut'' and ``background'' are falsely classi-
®ed into the ``crack'' class. That results in a low
classi®cation quality of the class crack. In contrast
to that, the neural nets show a di�erence in class
speci®c recognition. Mostly, the class speci®c error
for class crack is considerably better than for the
decision trees (e.g. 0.96 for backpropagation net in
Table 5 compared with 0.74 for the decision tree in
Table 4). Since a defect crack is more important
than the class undercut (which is not a defect but a
geometrical indication from the production pro-
cess of the pipe) it would be better to have the
lowest class speci®c error for crack. This avoids
false alarms and can save a lot of repair costs in
real life.

5.3. Classi®cation cost

Our decision tree produces decision surfaces
that are parallel to the feature axes. This method
should be able to approximate a non-linear deci-
sion surface, of course with a certain approxima-
tion error, which will lead to a higher error rate in
classi®cation. Therefore, we are not surprised that
there are more features involved in the classi®ca-
tion, see Table 9. The unpruned tree uses 14 fea-
tures and the pruned tree uses 10 features. The
learned decision tree is a very big and bushy tree
with 450 nodes. The pruned tree reduces to 250
nodes but still remains a very big and bushy tree.

The neural nets work only on seven features
and e.g. for the backpropagation net we have 72
neurons. That reduces the e�ort for feature ex-
traction and computation of the classi®cation re-
sult drastically.

Table 6

Contingency table of the classi®cation result for the radial basis

function net

Classi®cation

result

Real class index

Background Crack Under-

cut

Sum

Background 198 2 1 201

Crack 1 100 7 108

Undercut 9 0 72 81

Sum 208 102 80 390

pk 0.95 0.98 0.90

pt 0.99 0.93 0.89

p � 0:95

k � 0:92

Table 7

Contingency table of the classi®cation result for the LVQ

Classi®cation

result

Real class index

Background Crack Undercut Sum

Background 183 2 0 185

Crack 7 100 7 114

Undercut 18 0 73 91

Sum 208 102 80 390

pk 0.88 0.98 0.91

pt 0.99 0.87 0.80

p � 0:91

k � 0:86

Table 8

Contingency table of the classi®cation result for the fuzzy-

ARTMAP net

Classi®cation

result

Real class index

Background Crack Undercut Sum

Background 191 5 1 197

Crack 10 96 10 116

Undercut 7 1 69 77

Sum 208 102 80 390

pk 0.92 0.94 0.86

pt 0.97 0.83 0.90

p � 0:91

k � 0:86

Table 9

Number of features and number of nodes

Name of classi®er Number of features Number of nodes

Decision tree

Unpruned 14 450

Pruned 10 250

Backpropagation

net

7 72 neurons

RBF net 7

LVQ 7 51 neurons

Fuzzy-ARTMAP-

Net

7
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5.4. Learning performance

One of the advantages of induction of decision
trees is the fact that they are easy to use. Feature
selection and tree construction is done automati-
cally without human interaction. It takes only a
few seconds on a PC 486 until the decision tree has
been learned for the data set of 1924 samples used.
In contrast to that, neural network learning cannot
be handled as easily. The learning time for the
neural nets was 15 min for the backpropagation
net by 60 000 learning steps, 18 min for the RBF
net, 20 min for the LVQ net, and 45 min for the
Fuzzy-ARTMAP-net on a workstation type
INDY Silicon Graphics (R4400-Processor, 150
MHz) with the neural network simulator Neural-
Works Professional II/Plus version 5.0.

A disadvantage of neural nets is that the feature
selection is a preliminary step before learning. In
our case it was done with a backpropagation net.
The parameter signi®cance was determined based
on the contribution analysis method (see Section
3). From 42 features are selected only the seven
most signi®cant features which were selected by
the feature selection process. If the feature selec-
tion process is omitted, which is possible, then the
training time and the size of the neural nets in-
crease considerably.

Although the class distribution in the design
data set was not uniform, both methods of neural
net-based learning and decision tree learning did
well on the data set. It is possible that in the case of
decision trees, the poorer class speci®c error rate
for crack results from the non-uniform sample
distribution. Therefore, we used a data set in one
experiment where the number of samples for each
of the three classes was the same (420 samples). As
a result we got an error rate that was nearly the
same as the one shown in Table 3.

5.5. Explanation capability

One big advantage of decision trees is their ex-
planation capability. A human can understand the
rules and can control the decision making process.
A neural net based classi®er is more or less a black
box for humans. However, since the outcome of
the learning process is a very bushy tree, this rep-

resentation is not very readable for humans.
Therefore, some researchers favor rule-based rep-
resentations over tree structured representations
since rules tend to be more modular and can be
read in isolation of the rest of the knowledge base
constructed by induction. A compromise is to use
decision tree induction to build an initial tree and
then derive rules from the tree, thus transforming
an e�cient but opaque representation into a
transparent one (Quinlain, 1987b).

However, investigation in (Perner et al., 1996)
showed that the model derived by decision tree
induction does not always represent the model of a
human expert. The decisions might not appear in
the order a human would use them and especially
not at all in uncertain domains.

6. Conclusions

We compared decision tree induction to neural
nets. For our empirical evaluation, we used a data
set of X-ray images that were taken from welding
seams. Thirty six features described the defects
contained in the welding seams. Image feature
extraction was used to create the ®nal data set for
our experiment.

We found that special types of neural nets have
slightly better performance than decision trees. In
addition to that, there are not so many features
involved in the classi®cation, and this is a good
characteristic especially for image interpretation
tasks. Image processing and feature extraction is
mostly time-consuming and requires special pur-
pose hardware for real time processing for the
computation. However, the explanation capability
that exists for trees producing axis-parallel deci-
sion surfaces is an important advantage over
neural nets. Moreover, the learning process is not
so time-consuming, it comprises the two processes
necessary when building image interpretation sys-
tems: feature selection and learning the classi®er.
Furthermore, it is easy to handle.

All that shows that the decision on what kind of
method should be used is not only a question of
the resulting error rate. It is a more complex se-
lection process that can only be based on the
constraints of the application. The present paper
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provides some new aspects to the selection of a
classi®cation algorithm for a particular applica-
tion.
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